Расчет мощности электрокотла отопления

Электрокотел и расчет его мощности

 

Работу электрического котла отопления вкратце можно описать так: нагревательный элемент греет теплоноситель, который, циркулируя по трубам через радиаторы, обогревает помещение.

Виды электрокотлов.

Имеются аналоги, в которых ток пропускают непосредственно через теплоноситель. В некоторых случаях, когда естественная циркуляция теплоносителя по каким-то причинам затруднена, применяют его принудительную циркуляцию, используя насос.

Устройство электрического котла с элементом нагрева

Простейшая электронагревательная система состоит из теплообменника с теплоносителем (вода или антифриз), внутрь которого помещены нагревательные элементы (трубчатые электронагреватели – ТЭН).

Схема устройства электрокотла.

Вот вся простейшая конструкция. А конструкция самого нагревательного элемента и того проще (см. изображение 1). Спираль с высоким электрическим сопротивлением помещена в тонкостенную металлическую трубку и изолирована от нее путем заполнения всего пространства изоляционным материалом (окисью магния). Концы спирали прикреплены к выводам, которые запрессованы в фарфоровые изоляторы. Вся эта конструкция герметична относительно теплоносителя, а изоляторы герметично выведены вне нагревательного бака.

Котлы небольшой мощности работают от однофазной сети 220 В. В котлах, мощность которых превышает 12 кВт, используют трехфазную электросеть 380 В и, следовательно, три нагревательных элемента. При питании от напряжения 220 В необходимо иметь трехжильный кабель (фаза, ноль и защитное заземление), при питании от трехфазной сети необходимо иметь пятижильный кабель (три фазы, рабочий ноль и заземление). Это простая схема котлов, использующих естественную циркуляцию теплоносителя. Для принудительной циркуляции предусматривают циркуляционный малошумящий насос.

Устройство электродного электрокотла

Принцип работы электроидного электрокотла.

Еще более проста система подогрева воды с помощью электродов. Можно встретить такие названия, как электролизные, ионные, но все котлы этого типа работают по одному принципу: нагревательным элементом является не спираль, а сам теплоноситель. Это значит, что для получения необходимого для нагрева количества тепловой энергии необходимо иметь специально подготовленный состав теплоносителя.

Например, в воде нужно растворить углекислый натрий (соду, Na2CO3). Нагрев теплоносителя происходит за счет колебания его молекул под действием переменного электрического тока, который, как известно, колеблется с частотой 50 Гц. То есть за время, равное 1 с, молекулы теплоносителя 50 раз изменяют на 180 градусов направление движения. Коэффициент полезного действия (КПД) такого котла очень высокий (до 98%), но мощность его не превышает 16 кВт.

Дальнейшее усложнение любого отопительного котла связано с обвязкой его различными датчиками и регуляторами, такими, как датчики температуры и регуляторы потребляемой мощности, а также защитными средствами.

Преимущества и недостатки электрического обогрева

К преимуществам следует отнести:

Схема работы электрического котла.

  • экологическая безопасность (нет вредных отходов сгорания топлива);
  • бесшумность в работе;
  • несложные схемы для организации автоматического режима работы;
  • нет необходимости в дымоходах (при использовании конденсационного газового котла потребуется и водосток для удаления конденсата);
  • простота эксплуатации;
  • в сравнении с газовым котлом придется оформить существенно меньшее количество разрешающих документов. В большинстве случаев достаточно разрешения Энергонадзора.

Бесшумная работа котлов отопления и экологическая чистота позволяют располагать их непосредственно в помещении, чему способствует и отсутствие дымоходов. Следовательно, монтаж электрического котла отопления и напольного и настенного типа не представляет трудностей.

К недостаткам такого варианта отопления следует отнести значительно большие затраты на обогрев по сравнению с газовыми аналогами. Особенно велико преимущество конденсационного газового аналога. Поэтому электрический обогрев вынужденно используют в тех местах, где отсутствует централизованное газоснабжение.

Монтаж напольного и настенного котла

Конструкция трехфазного электрокотла.

Целесообразно устанавливать электрические котлы в помещения площадью до 500 м2. Монтаж системы отопления и подсоединение к ней котла можно выполнить самостоятельно. В настенном варианте их закрепляют с помощью анкерных болтов, а в напольном их обычно устанавливают на специальную подставку. Если у вас нет опыта установки и подключения автоматов защиты от короткого замыкания и токов утечки, то лучше обратиться к специалисту-электрику. В этом вопросе вольности недопустимы.

Сечение жил кабеля должно соответствовать требованиям, указанным в сопроводительной документации; оно зависит от мощности. Могут возникнуть проблемы с защитным заземлением. Имейте в виду, что заземление – это не просто штырь, вбитый в грунт, а устройство, от которого зависит жизнь. На контур заземления должны быть замкнуты все металлические части системы отопления.

И главное. Сопротивление заземляющего контура должно отвечать нормам для соответствующего грунта. Максимальная величина сопротивления заземления зависит от физических свойств грунта и должна быть указана в выданных разрешительных документах. Чем меньше сопротивление заземления, тем лучше. Максимальное значение не должно превышать 10 Ом. Для понижения сопротивления заземляющего контура нужно использовать медные пластины, а место заземления необходимо пропитывать соляным раствором. Величину сопротивления заземления нужно проверять перед началом отопительного сезона.

Как рассчитать требуемую мощность котла отопления

Если дом построен с соблюдением современных требований по энергосбережению, то есть утеплены стены, потолки и кровля, установлены металлопластиковые окна и высота потолков не превышает 3 метров, то можно предварительно определить требуемую мощность котла отопления и, соответственно, его стоимостью. Для этого обогреваемую площадь (в квадратных метрах) следует разделить на 10 и полученный результат увеличить на 20%.

Сделав расчет требуемой мощности с учетом фактического состояния вашего строения, возможно, построенного во времена, когда энергоносители стоили копейки, и сравнив такой же расчет потерь, но для дома, построенного с учетом современных требований, можно убедиться в целесообразности утепления вашего строения. Тем более, что выполнить это нетрудно, а понесенные затраты окупятся через два-три отопительных сезона.

Расчет потерь тепла Q, уходящего через стены, окна, потолок и пол, имеющих площадь S, можно выполнить по формуле:

Q=k∙S∙(tвн-tнар), (1)
где k – коэффициент теплопередачи материала, из которого состоит часть здания,
tвн и tнар – соответственно температура внутри помещения и температура наружного воздуха.

Примечание: делая расчет, не допускайте элементарной ошибки. Значение температуры наружного воздуха в градусах Цельсия подставляйте в формулу со знаком “минус”.
Например, tвн-= 18°С, tнар=минус 20°С (tвн-tнар)=(18+20)=38°С.

Формула (1) проста, но несколько труднее рассчитать коэффициент теплопередачи, через который можно определить эффект от утепления дома.

Значения коэффициентов теплопередачи соответствующих материалов обычно указывает поставщик, иначе их нужно находить в соответствующей справочной литературе.

Об эффективности утепления дома

Чтобы убедиться, насколько эффективно влияет утепление на уменьшение потерь тепла, следует воспользоваться формулой (2), чтобы рассчитать два варианта.

Сначала выполняется расчет коэффициента теплопередачи для стены, выложенной из пустотелого керамического кирпича толщиной 640 мм (0,64 м), что соответствует кладке в 2 кирпича. Коэффициент теплопередачи кирпича σ=0,41. Расчет показывает, что, подставив значения αвн=8,7, αнар=23 и отношение d/σ = 0,64/0,41=1,56, получится коэффициент теплопередачи стены k=0,58

Следует выполнить расчет коэффициента теплопроводности стены из такого же кирпича, состоящей из двух частей и промежутка между ними, заполненного минеральной ватой. Толщина в ½ кирпича и в кирпич в сумме равна 370 мм. Толщина утеплителя (σ = 0,045 Вт∙(м град)) равна 100 мм. Расчет показывает, что общий коэффициент теплопередачи равен 0,35 Вт∙(м град)). То есть при существенно меньшей толщине кирпичной кладки коэффициент уменьшился в 0,58/0,35=1,67 раза, или почти на 40 %.

Вспомните, о чем говорит народная мудрость. Скупой платит дважды. Сэкономите на утеплении, и через 2-3 отопительных сезона эта экономия будет утрачена.




Добавить комментарий: